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ABSTRACT 
The study of near-ring of transformations was initiated by D.Ramakotaiah and G.KoteswaraRao [2]. In their paper 

they characterized a class of maximal and minimal right ideals. The study of loop-near rings was initiated by 

D.Ramakotaiah and Santakumari [4]. The study of loop-half-groupoid near rings was initiated by D.Ramakotaiah 

and PrabhakarRao [3]. In this paper we continue the study of loop-half-groupoid near-rings. 

This paper is divided into three sections. In the first section, we present some basic definitions of loop-half-groupoid 

near-rings and some basic results without proofs. In second section we present some basic results without proofs 

which are necessary for our main work. In the third section we characterize a class of minimal right ideals of a loop-

half-groupoid near-rings of transformations of a loop. 

 

 

I. INTRODUCTION 
 

For the definitions of half-groupoids, groupoids, loops, sub loops and normal sub loops see [5]. We begin this 

section with the following. 

 

Definition 1.1 

A system 𝑁 =  𝑁, +,∙, 𝑜  is called a loop-half-groupoid near-ring provided 

(i)𝑁 =  𝑁, +, 𝑜  is a loop. 

(ii)𝑁 =  𝑁, ∙  is a half-groupoid. 

(iii)  𝑎 ∙ 𝑏 ∙ 𝑐 = 𝑎 ∙ (𝑏 ∙ 𝑐)for all 𝑎, 𝑏, 𝑐 ∈ 𝑁for which 𝑎 ∙ 𝑏, 𝑏 ∙ 𝑐, 𝑎 ∙  𝑏 ∙ 𝑐 ,  𝑎 ∙ 𝑏 ∙ 𝑐  are defined in 𝑁.  

(iv) 𝑎 ∙  𝑏 + 𝑐 = 𝑎 ∙ 𝑏 + 𝑎 ∙ 𝑐for all 𝑎, 𝑏, 𝑐 ∈ 𝑁 for which 𝑎 ∙  𝑏 + 𝑐 , 𝑎 ∙ 𝑏  𝑎𝑛𝑑 𝑎 ∙ 𝑐 

are well defined in 𝑁 

(v)   𝑎 ∙ 𝑜 𝑎𝑛𝑑 𝑜 ∙ 𝑎 𝜖 𝑁and  𝑎 ∙ 𝑜 = 𝑜 ∙ 𝑎 = 𝑜. 
 

Remark1.2 

For any  „𝑎‟  belonging to an additive loop, we shall denote the unique left and right inverses of  „𝑎‟ by 𝑎𝑙 𝑎𝑛𝑑 𝑎𝑟  

respectively. It can be easily verified that (𝑎 ∙ 𝑏)𝑟 = 𝑎 ∙ 𝑏𝑟and (𝑎 ∙ 𝑏)𝑙 = 𝑎 ∙ 𝑏𝑙for all 𝑎, 𝑏 ∈ 𝑁for which 𝑎 ∙ 𝑏, 𝑎 ∙ 𝑏𝑙 

and 𝑎 ∙ 𝑏𝑟are defined. We write 

𝑎 ∙ 𝑏as  . 

 

Example 1.3 
Every loop near-ring is a loop-half-groupoid near-ring.. 

 

Example 1.4 

Let (𝐺, +, 𝑜  )be an additive loop where 𝑜  is the additive identity element of 𝐺. Let ∆ be proper subset of 𝐺containing 

𝑜 . Define 𝑎 ∙ 𝑏 = 𝑏  for 𝑜 ≠ 𝑎 ∈ ∆ 𝑎𝑛𝑑 𝑏 ∈ 𝐺.  Define 𝑜 ∙ 𝑏 = 𝑜  and𝑎 ∙ 𝑜 = 𝑜 for all 𝑎, 𝑏 ∈ 𝐺 , then  (𝐺, +,∙, 𝑜  ) is a 

loop-half-groupoid near-ring. 
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Definition 1.5 

Let  𝑁, +,∙, 𝑜  be a loop-half-groupoid near-ring and let (𝐺, +, 𝑜  )be a loop, then 𝐺 is called a 𝑁-loop provided there 

exists a mapping (𝑔, 𝑛) → 𝑔𝑛  of  𝐺 × 𝑁 𝑖𝑛𝑡𝑜 𝐺  such that 𝑔 𝑛1 + 𝑛2 = 𝑔𝑛1 + 𝑔𝑛2  𝑎𝑛𝑑 𝑔 𝑛1𝑛2 = (𝑔𝑛1)𝑛2for 

all𝑛1 , 𝑛2 ∈ 𝑁 𝑎𝑛𝑑 𝑔 ∈ 𝐺 for which 𝑛1 ∙ 𝑛2 is defined in 𝑁. 

 
Definition 1.6 

Let 𝑁 be a loop-half-groupoid near-ring. Let 𝐺1  𝑎𝑛𝑑 𝐺2  be 𝑁-loops. A homomorphism 𝑓: 𝐺1 → 𝐺2 is called a 𝑁-

homomorphism provided  𝑔𝑛 𝑓 =  𝑔𝑓 𝑛   for all 𝑔 ∈ 𝐺and 𝑛 ∈ 𝑁. The kernel of 𝑓 is called a 𝑁 -kernel of 𝐺1 . 

 

Definition 1.7 

Let 𝑁 be a loop-half-groupoid near-ring. An  𝑁-loop 𝐺 is said to be an irreducible 𝑁-loop if it has no non-trivial 𝑁 –
kernels. 

 

Lemma 1.8 

If 𝑁 is a loop-half-groupoid near-ring then a non-empty subset 𝑀of a 𝑁-loop  is  a 

𝑁 -kernel of 𝐺 iff 𝑀 is a normal subgroup of 𝐺. 
 

Definition 1.9 

A non-empty subset 𝐿 of a loop-half-groupoid near-ring 𝑁 is called a right ideal of 𝑁provided  𝐿, +, 𝑜   is a normal 

sub loop of 𝑁 and  𝑙 +  𝑛1 𝑛2 + 𝑛1𝑛2 ∈ 𝐿for all  

𝑙 ∈ 𝐿, 𝑛1 , 𝑛2 ∈ 𝑁 for which   𝑙 +  𝑛1 𝑛2 , 𝑛1𝑛2 are defined. 

 

Definition 1.10 

Let 𝑁 be a loop-half-groupoid near-ring. Let 𝐺 be an 𝑁-loop. An element 𝑔 ∈ 𝐺 is called an 𝑁-generator of 𝐺 or 

simply a generatorof 𝐺 provided 𝑔𝑁 = 𝐺. 
 

Definition 1.11 

If 𝑁 is a loop-half-groupoid near-ring, then  

(i)  An irreducible 𝑁 -loop with a generator is called an 𝑁 –loop of type 0. 

(ii) A  𝑁-loop of type 0 is called a 𝑁 -loop of type 1 provided 𝑔𝑁 = 𝐺 𝑜𝑟𝑔𝑁 = {𝑜} for all 𝑔 ∈ 𝐺. 
(iii)A  𝑁-loop of type 1 is called a 𝑁 -loop of type 2 if each non-zero element is a generator. 

 

Definition 1.12 

If 𝑁 is a loop-half-groupoid near-ring, then any right ideal of 𝑁 is said to be semi large if it has nonzero intersection 

with any one of the direct summand of 𝑁 where 𝑁 is written as a direct sum of right ideals. 

 

II. PRELIMINARIES 
 

In this section we present some basic definitions and basic results without proofs which are needed for our main 
work. All these definitions and results can be seen in [3]. 

We begin this section with the following: 

 

Definition 2.1 

Let (𝐺, +, 𝑜  ) be a loop and ∆  be a subset of 𝐺 . A set S of endomorphisms of 𝐺  is called a ∆-centralizer of 

𝐺 provided: 

(i)  The zero endomorphism 𝑜 ∈ 𝑆. 
ϕ(iii) ∆∅ ⊆ ∆ for all ∅𝜖𝑆. 
(iv) For∅, 𝜓𝜖𝑆 and  𝜔 𝜙 = (𝜔)𝜓   for some 𝑜 ≠ 𝜔𝜖∆⇒ Φ = 𝜓. 
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Definition 2.2 

Let (𝐺, +, 𝑜  ) be a loop and ∆ be a subset of 𝐺 and 𝑆 be ∆-centralizer of 𝐺.  

A mapping 𝑇 of 𝐺 into itself is called a ∆-centralizer of 𝐺 over 𝑆 provided  𝜔𝜙 𝑇 = (𝜔𝑇)𝜙 for all 𝜔𝜖∆ 𝑎𝑛𝑑 𝜙𝜖𝑆. 
 

Remark 2.3 

If 𝑜 𝜖Δ and 𝑇 is a Δ-transformation of 𝐺over 𝑆, then 𝑇 fixes  𝑜 . We shall denote the set of all Δ-transformations of 𝐺 

over 𝑆  by 𝑁 𝑆, Δ .   It can be verified that for any endomorphism 

𝜙 𝑜𝑓 𝐺, (𝑔𝜙)𝑟 = 𝑔𝑟𝜙 𝑎𝑛𝑑 (𝑔𝜙)𝑙 = 𝑔𝑙𝜙 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔𝜖𝐺. 
 

Lemma 2.4 

Let (𝐺, +, 𝑜  ) be a loop and ∆ be a subset of 𝐺 containing 𝑜  and 𝑆 be ∆-centralizer of 𝐺. Then 𝑁 𝑆, Δ  is a loop-half-
groupoid near-ring under the usual addition and iteration of mappings. 

 

In general 𝑁 𝑆, Δ  is not a loop-near-ring. We now state two sufficient conditions under which 𝑁 𝑆, Δ is a loop-

near-ring. 

 

Lemma 2.5 

𝑁 𝑆, Δ is a loop-near-ring under any one of the following conditions. 

(i) for each  𝑇 𝑖𝑛 𝑁 𝑆, Δ , Δ𝑇 ⊆ ∆. 

(ii)for each 𝜔𝜖𝐺,  𝜔𝑇 𝜙 =  𝜔𝜙 𝑇 𝑓𝑜𝑟 𝑎𝑙𝑙   𝑇 𝑖𝑛 𝑁 𝑆, Δ  and 𝜙  𝑖𝑛  𝑆. 
 

Throughout this remaining section we assume that 𝐺is a loop ,Δ a subset of G containing 𝑜  properly and 𝑆 be ∆-

centralizer of 𝐺.  𝑁 𝑆, Δ is the set of all  Δ-transformations of 𝐺 over 𝑆 and 𝑁 𝑆, Δ  is a loop-half-groupoid near-

ring. 

 

Lemma 2.6 

Let Gbe  loop and Δ  a subset of  G  containing 𝑜 . Let 𝑆  be ∆ -centralizer of 𝐺  then every non zero element of 

Δ is a 𝑁 𝑆, Δ  generator of G . 

 

Lemma 2.7 

Let G be a loop and 𝑆 be a set of endomorphisms of 𝐺 containing 𝑜 such that 𝑆-𝑜  is a group of automorphismsof  . 

Then 𝑆 is a centralizer of  some subset 𝑜  of 𝐺 containing non zero element of 𝐺 iff  ⋃𝐹 ∅ ≠ 𝐺, ∅ ∈ 𝑆-𝑜  , ∅ ≠ 𝐼 , 
where 𝐼  is the identity mapping of 𝐺  and 𝐹 ∅ = {𝑥 ∈ 𝐺 ∶ 𝑥∅ = 𝑥} . If this is the case then 𝐺  has a 𝑁 𝑆, Δ  

generator. 

 

Definition 2.8 

Let G be a loop, Δ a subset of 𝐺containing 𝑜  and 𝑆 a Δ-centralizer of 𝐺. 

 Let 𝑜 ≠ 𝜔1 , 𝜔2𝜖∆. Then 𝜔1  𝑎𝑛𝑑 𝜔2  are said to be 𝑆-equivalent if there exists ∅ ∈ 𝑆-𝑜  such that 𝜔1∅ = 𝜔2 .  
 

Definition 2.9 

The relation “𝑆-equivaqlent” is an equivalence relation on ∆. If Γ is any  subset of 𝐺 , then we denote the set 
  𝑛𝜖𝑁 𝑠, Δ :  𝛾 𝑛 =  𝑜  𝑓𝑜𝑟 𝑎𝑙𝑙 𝛾𝜖 Γ  by 𝐴(Γ). It can be seen that 𝐴(Γ)is a loop. If 𝑁 𝑆, Δ is a loop-near-ring then 

𝐴(Γ) is a  𝑁 𝑆, Δ  -loop. 

 

Lemma2.10 

containing ω. In particular if𝑁 𝑆, Δ  is a loop-near-ring then G is  𝑁 𝑆, Δ   isomorphic to A(G − Γ). 

 

Theorem 2.11 

If 𝑁 𝑆, Δ  is a loop-near-ring, then G  is a   𝑁 𝑆, Δ  - loop of type ′𝑜‟ if and only if for some S-equivaqlence classΓ, 

A(G − Γ) does not contain a non zero nilpotent right ideal of nilpotency 2. 
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Theorem 2.12 

For each proper 𝑁 𝑆, Δ -kernel 𝐺1  of G and for each o ≠ ωϵ∆, 𝜔 + 𝐺1 ⊆ Γ where Γ is the S-equivaqlence containing 

𝜔. 

 

Theorem 2.13 

Let G be a loop. Let Δ be a subset of G containig o and 𝑆 be ∆-centralizer of 𝐺. If ω is a non zero element of Δ , then 

there exixts𝑇𝜖 𝑁 𝑆, Δ  which maps every element of the 

S-equivaqlence containing 𝜔 onto itself and maps every other element onto o  . 

 

III. CHARACTERIZATION OF MINIMAL RIGHT IDEALS 
 

In this section we characterize a class of minimal right ideals and a class of maximal right ideals of a loop-half-

groupoid near-ring of Δ-transformations of a loop 𝐺 over a set of endomorphisms of 𝐺 

 

Throughout this section we assume that 𝐺 is any loop and 𝑆 is a set of endomorphisms of 𝐺such that 𝑆-𝑜  is a group 

of automorphisms of 𝐺 where 𝑜  is the zero endomorphism of 𝐺. Also we assume that Δis  a subset of 𝐺 containing o  

and 𝑁 𝑆, Δ  stands for the loop-half-groupoid near-ring of Δ-transformations of 𝐺 over 𝑆 which acts 𝑜-primitively 

on 𝐺 as 𝑁 𝑆, Δ -loopoid. 

 

Lemma 3.1 

           If 𝐻 is any subset of 𝐺, then the set 𝐴 𝐻 = {𝑇𝜖 𝑁 𝑆, Δ :  𝑕 𝑇 = o  for all hϵH } is a 𝑁 𝑆, Δ  -loopoid. 

Proof: Clearly 𝐴 𝐻  is a subloopof  ( 𝑁 𝑆, Δ , + ) . Hence it is a loop. 

Let 𝑇 ′𝜖𝑁 𝑆, Δ and let 𝑇𝜖𝐴(𝐻) such that 𝑇𝑇 ′ is defined.  

For any 𝑕𝜖𝐻,  𝑕 𝑇𝑇 ′ =  𝑕𝑇 𝑇 ′ =  o  T ′ = o ⇒ TT′ ∈ A(H) 

Also for any T ∈ A(H) and T1 , T2 ∈ N S, T , T T1 + T2 = TT1 + TT2  and  T T1 T2 = (TT1 )T2 

Where T T1 + T2 , TT1 , TT2, T T1 T2 , (TT1 )T2are defined. 

 Therefore  𝐴 𝐻 = {𝑇𝜖 𝑁 𝑆, Δ :  𝑕 𝑇 = o  for all hϵH } is a 𝑁 𝑆, Δ  -loopoid. 

 

Lemma 3.2 

If 𝐿  is a minimal right ideal of 𝑁 𝑆, Δ such that 𝐿  is not contained in 𝐴 ∆  𝑡𝑕𝑒𝑛 𝐿 𝑖𝑠𝑁 𝑆, Δ  –

loopoidhomomorphicto 𝐺. 

Proof: Since 𝐿 ⊄ 𝐴 ∆ ,there exists an element 𝑜 ≠ 𝜔𝜖∆ such that 𝜔𝐿 ≠ {o }. Since 𝜔 is a 𝑁 𝑆, Δ  generator of 𝐺, 

we have 𝐺 = 𝜔𝑁 𝑆, Δ . Clearly 𝜔𝐿  is a subloop of 𝐺.Since 𝐿 is a normal subgroup of 𝐺, we have that 𝜔𝐿 is also a 

normal subgroup of 𝐺. 
 

Let 𝜔𝑇1 ∈ 𝜔𝐿 and 𝑔 ∈ 𝐺 = 𝜔𝑁 𝑆, ∆ ⟹ 𝑔 = 𝜔𝑇 ′ for some 𝑇 ′ ∈ 𝑁 𝑆, ∆ . Let 𝑇 ∈  𝑁 𝑆, ∆   

Such that  𝑇1 + 𝑇 ′ 𝑇 and 𝑇 ′𝑇𝑟  are defined. 
 

Now  𝜔𝑇1 + 𝜔𝑇 ′ 𝑇 + 𝜔𝑇 ′𝑇𝑟 = 𝜔  𝑇1 + 𝑇 ′ 𝑇 + 𝑇 ′𝑇𝑟  𝜖𝜔𝐿. Therefore 𝜔𝐿  is a 𝑁 𝑆, Δ  –loopoid kernel of 𝐺.Since 

𝐺 is irreducible and 𝐿 ≠ {o } , we have 𝜔𝐿 = 𝐺.  Now define a mapping ∅: 𝐿 → 𝐺 𝑏𝑦 ∅ 𝑙 = 𝜔𝑙 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙 ∈ 𝐿. 
Clearly ∅ is 𝑁 𝑠, ∆ -loopoid epimorphism of 𝐿 onto 𝐺 . Also clearly  ker∅  is a right ideal of 𝑁 𝑠, ∆  which is 

properly contained in 𝐿. Since 𝐿 is a minimal right ideal, we have ker∅={𝑜 } and hence ∅ is one-one. Hence ∅ is an 

𝑁 𝑠, ∆ -loopoid isomorphism of 𝐿 𝑜𝑛𝑡𝑜 𝐺 . 
 

Theorem 3.3 

Let 𝐺  be any loop and {o } ≠ ∆⊆ G . Let 𝑆 𝑎𝑛𝑑 𝑆′  be two ∆-centralizers of 𝐺  such that 𝑆 ⊆ 𝑆′ . Then 𝑁 𝑆, ∆ =
𝑁 𝑆′, ∆  if and only if = 𝑆′ . 

Proof: If 𝑆 = 𝑆′ then there is nothing to prove. 

Conversly suppose that 𝑁 𝑆, ∆ = 𝑁 𝑆 ′, ∆ , suppose if possible 𝑆 ≠ 𝑆′. 

Since 𝑆 ⊆ 𝑆′, there exists  ∅′ ∈ 𝑆′ such that  ∅′ ∈ 𝑆 , clearly ∅′ ≠ 𝑜  . 

Let 𝜔 be any non zero element of ∆. Let 𝐶 𝑎𝑛𝑑 𝐶 ′ be respectively 𝑆 𝑎𝑛𝑑 𝑆′ equivalence classes containing 𝜔. 



 
[ICESTM-2018]  ISSN 2348 – 8034 
                                                                                                                                                                         Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

340 

Now 𝐶 =  𝜔∅: ∅ ∈ 𝑆 − 𝑜   𝑎𝑛𝑑  𝐶 ′ = {𝜔∅: ∅ ∈ 𝑆′ − 𝑜 }. 

We have 𝜔∅′ ∈ 𝐶 ′. Suppose if possible 𝜔∅′ ∈ 𝐶. Then there exists ∅ ∈ 𝑆 − 𝑜  such that 𝜔∅′ = 𝜔∅. 

Since 𝑆 ⊆ 𝑆′ , we have ∅ ∈ 𝑆′ . Now ∅ 𝑎𝑛𝑑 ∅′are elements of 𝑆′ − 𝑜  such that 𝜔∅′ = 𝜔∅where o ≠ ωϵ∆. By the 

definition of ∆-centralizer, ∅ = ∅′which is a contradiction. 

Therefore 𝜔∅′ ∉ 𝐶. Write 𝜔∅′ = 𝜔1 . 

By lemma 2.6 there exists a  𝑇 ∈ 𝑁 𝑆, ∆  such that 𝜔𝑇 = 𝜔1  and 𝑇 maps every element of 𝐺which does not belong 

to the 𝑆 −  equivalence class 𝐶 onto o . Since 𝑁 𝑆, ∆ = 𝑁 𝑆′, ∆ , we have 𝑇 ∈ 𝑁 𝑆′, ∆  and hence o = 𝜔1𝑇 =
  𝜔∅′ 𝑇 = (𝜔𝑇)∅′. 

Since ∅ is an automorphism of 𝐺, it follows that 𝜔𝑇 = o . Therefore  o = 𝜔𝑇 = 𝜔1 =  𝜔∅′. 
Again since ∅′is an automorphism. ∅′ = o , which is a contradiction. Therefore 𝑆 = 𝑆′ . 
 

Corrolary 3.4 

The set of all loop endomorphisms∅ of loop 𝐺 such that  𝜔∅ 𝑇 = (𝜔𝑇)∅for all 𝜔𝜖∆, 𝑇 ∈ 𝑁 𝑆, ∆  and ∆∅ ⊆ ∆is 𝑆 

itself. 

Proof: 

 

 Let 𝑆′ = {∅: ∅ 𝑖𝑠 𝑎 𝑙𝑜𝑜𝑝 𝑒𝑛𝑑𝑜𝑚𝑜𝑟𝑝𝑕𝑖𝑠𝑚 𝑜𝑓 𝐺 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 ∆∅ ⊆ ∆ 𝑎𝑛𝑑   𝜔∅ 𝑇 = (𝜔𝑇)∅  for all 𝜔𝜖∆, 𝑇 ∈
𝑁 𝑆, ∆ }. 

Now we shall prove that 𝑆′ is a ∆-centralizer of 𝐺. 
Clearly 𝑜 ∈ 𝑆′ and ∆∅ ⊆ ∆ for all ∅ ∈ 𝑆 − 𝑜 . 

Let ∅ be a non zero element of 𝑆′. Since 𝐺 is irreducible , the kernel of ∅ must be either 𝐺 or { o  }. Since ∅ ≠ 𝑜 it 

follows that ker∅ = { o  } and hence ∅ is one-one. 

       Let 𝑔 ∈ 𝐺 and 𝜔∅ ≠ 𝜔𝜖∆. Now 𝜔∅𝜖∆and ∅ ≠ o . 

       Hence by lemma 2.6, 𝜔∅ is a 𝑁 𝑆, ∆  -generator of 𝐺. Therefore, there exists a   

𝑇 ∈ 𝑁 𝑆, ∆ such that   𝜔∅ 𝑇 = 𝑔. Put 𝑔1 = 𝜔𝑇. Now  𝑔1 ∈ 𝐺 𝑎𝑛𝑑 𝑔1∅ =  𝜔𝑇 ∅ =   𝜔∅ 𝑇 = 𝑔.  

Hence ∅ is onto . Therefore ∅ is an automorphism of 𝐺. 
Finally suppose that 𝜔∅ = 𝜔Ψ, where ∅, Ψ ∈ S − 𝑜  and o ≠ ωϵ∆. 

Let 𝑔 ∈ 𝐺. Then there exists a 𝑇 ∈ 𝑁 𝑆, ∆ such that 𝜔𝑇 = 𝑔. 

Now 𝑔∅ =  𝜔𝑇 ∅ =  𝜔∅ 𝑇 =  𝜔Ψ T =  𝜔𝑇 Ψ = gΨ. This is true for all 𝑔 ∈ 𝐺. 

Hence ∅ = Ψ. 
Therefore 𝑆′ is a ∆-centralizer of 𝐺. 
By the definition of 𝑆′, 𝑆 ⊆ 𝑆′. It can be easily verified that 𝑁 𝑆, ∆ = 𝑁 𝑆′ , ∆ . 
Therefore by the above theorem 3.3 we have 𝑆 = 𝑆′. 
 

Lemma 3.5 

Let 𝐶 be an 𝑆-equivalence class on ∆. Then 𝐴(𝐺 − 𝐶) is a 𝑁 𝑆, ∆ -loopoid of type 0 and hence it is a minimal right 

ideal of 𝑁 𝑆, ∆ . 

Proof: 

 Clearly by lemma 3.1, 𝐴(𝐺 − 𝐶) is a 𝑁 𝑆, ∆ -loopoid. Let  𝑔 ∈ 𝐺. 

By theorem 2.13 there exists a 𝑇 ∈ 𝑁 𝑆, ∆  such that 𝑔𝑇 = 𝑔 and 𝑔′𝑇 = o  for all 𝑔′ ∈ 𝐺 − 𝐶 ⇒ 𝑇 ∈ 𝐴 𝐺 − 𝐶 . 
Now let 𝑔1 ∈ 𝐶. 
Then 𝑔1 = 𝑔∅ for some ∅ ∈ 𝑆 − 𝑜 ⇒ 𝑔1𝑇 =  𝑔∅ 𝑇 =  𝑔𝑇 ∅ = 𝑔∅ = 𝑔1 . 
Hence 𝑔1𝑇 = 𝑔1 for some 𝑔1 ∈ 𝐶. Now we shall show that 𝑇𝑁 𝑆, ∆ = 𝐴 𝐺 − 𝐶 where 𝑇𝑁 𝑆, ∆ = {TT1 = T1 ∈

 𝑁 𝑆, ∆  𝑎𝑛𝑑 TT1  is defiHence ned}. 

Let TT1 ∈ 𝑇𝑁 𝑆, ∆ . 

For any 𝑔 ∈ 𝐺 − 𝐶,  𝑔 TT1 =  gT T1 =  o  T1 = o . 

Hence TT1 ∈  𝐴 𝐺 − 𝐶 . 
Conversly suppose that T1 ∈ 𝐴 𝐺 − 𝐶 . 
Define T2 : G → G by  g T2 = (g)T1if 𝑔 ∈ 𝐶 𝑎𝑛𝑑 o  if g ∈ G − C. 

Now it can be easily verified that T2 ∈  𝑁 𝑆, ∆ and T1 = TT2 ⇒ T1 ∈ 𝑇𝑁 𝑆, ∆ . 

Therefore 𝑇𝑁 𝑆, ∆ = 𝐴 𝐺 − 𝐶 . 
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Put 𝐾 = 𝐴 𝐺 − 𝐶 . Now 𝐾 is a right ideal of 𝑁 𝑆, ∆ . 
 
Further for any 𝑔 ∈ 𝐶, 𝑔𝐾 = 𝑔𝐴 𝐺 − 𝐶 = 𝑔 𝑇𝑁 𝑆, ∆ = 𝑔𝑁 𝑆, ∆ = 𝐺. 
For some 𝑔 ∈ 𝐶. Define ∅𝑔: 𝐾 → 𝑔𝐾 𝑏𝑦  𝑘 ∅𝑔 = 𝑔𝑘  𝑓𝑜𝑟 𝑎𝑛𝑦  𝑘 ∈ 𝐾.  
Clearly ∅𝑔 is a 𝑁 𝑆, ∆ -loopoidepimorphism of 𝐾onto 𝐺. Since 𝑆-equivalent elements have equal annihilators, we 

have 𝐴 𝐺) = 𝐴(𝐶 . 
Therefore  ker∅𝑔 = 𝐾⋂𝐴 𝑔 = 𝐴 𝐺 − 𝐶 ⋂𝐴 𝐶 = 𝐴 𝐺 = {𝑜 } 

Therefore ∅𝑔 is an 𝑁 𝑆, ∆ -loopoid isomorphism of 𝐾 𝑜𝑛𝑡𝑜 𝐺. Since 𝐺  is a 𝑁 𝑆, ∆ -loopoid 

of type 0, 𝐾 = 𝐴 𝐺 − 𝐶  is also a 𝑁 𝑆, ∆ -loopoid of type 0 and hence 𝐴 𝐺 − 𝐶 is a minimal right ideal of 𝑁 𝑆, ∆ . 
 

Theorem 3.6 

Let 𝐺 be a 𝑁-loopoid of type 0. If 𝑔 is a 𝑁 -generator of 𝐺, then 𝐴(𝑔) is a maximal right ideal of 𝑁. 

Proof: 

          Since 𝑔 is a 𝑁 -generator of 𝐺, we have 𝑔𝑁 = 𝐺. 
Define a mapping ∅: 𝑁+ → 𝐺 𝑏𝑦 ∅ 𝑥 = 𝑔𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑁+. 

For any 𝑥1 , 𝑥2 ∈ 𝑁+, ∅ 𝑥1+𝑥2  = 𝑔 𝑥1+𝑥2  = 𝑔𝑥1 + 𝑔𝑥2 = ∅ 𝑥1 + ∅ 𝑥2  . 
For any 𝑥 ∈ 𝑁+, 𝑛 ∈ 𝑁, ∅ 𝑥𝑛 = 𝑔 𝑥𝑛 =  𝑔𝑥 𝑛 = ∅ 𝑥 𝑛. 
Let 𝑔1 ∈ 𝐺 → 𝑔1 = 𝑔𝑥 for some 𝑥 ∈ 𝑁. Now 𝑥 ∈ 𝑁 and  ∅ 𝑥 = 𝑔𝑥.  Hence 𝑥 ∈ ker ∅ iff∅ 𝑥 = o  iff 𝑔𝑥 = o  iff 

𝑥 ∈ 𝐴 𝑔 . 
 

Therefore, ∅  is a 𝑁 -loopoid homomorphism of𝑁+ onto 𝐺  with Kernel 𝐴 𝑔 . Hence 𝑁+/𝐴(𝐺)  is a 𝑁 -loopoid 

isomorphic to 𝐺 . Since 𝐴 𝑔  is the kernel of 𝑁 -loopoid homomorphism, it is a right ideal of 𝑁 . Since 𝐺  is 

irreducible, we have 𝑁+/𝐴(𝐺) is also irreducible and hence 𝐴 𝑔  is a maximal right ideal of 𝑁. 
 

Lemma 3.7 

Let 𝐶 be an 𝑆-equivalence class on ∆. Then 𝐴 𝐶  is a maximal right ideal of 𝑁 𝑆, ∆ . 
Proof: 

By the above theorem 3.6 ,𝐴(𝐺) is a maximal right ideal of 𝑁 𝑆, ∆  for any 𝑔 ∈ ∆. Since all the elements of an 𝑆-

equivalence class have the same annihilators, we have 𝐴 𝐶 = 𝐴(𝑔) for some 𝑔 ∈ 𝐶. Hence 𝐴 𝐶  is a maximal 

right ideal of 𝑁 𝑆, ∆ . Hence the result. 

 

Lemma 3.8 

Let 𝐶 be an 𝑆-equivalence class. Then 𝑁 𝑆, ∆  is a direct sum of 𝐴 𝐶  𝑎𝑛𝑑 𝐴 𝐺 − 𝐶 . 
Proof: 

WE have 𝐴 𝐺 − 𝐶 ∩ 𝐴 𝐶 = 𝐴 𝐺 =  𝑜  .Since𝐴 𝐺 − 𝐶  is a minimal right ideal, it is a non zero right ideal of 

𝑁 𝑆, ∆  and hence 𝐴 𝐺 − 𝐶 ⊈ 𝐴 𝐶 . Since 𝐴 𝐶  is a maximal right ideal, we have 𝐴 𝐶 + 𝐴 𝐺 − 𝐶 =  𝑁 𝑆, ∆ . 

Hence 𝑁 𝑆, ∆  is a direct sum of 𝐴 𝐶  𝑎𝑛𝑑 𝐴 𝐺 − 𝐶 . 

 

Lemma 3.9 

If 𝐿 is a minimal right ideal of 𝑁 𝑆, ∆ such that 𝐿 is not contained in 𝐴 ∆  and 𝐿 is a semilarge , then 𝐿 =  𝐴 𝐺 − 𝐶  

where 𝐶 is an 𝑆-equivalence class of ∆. 
Proof: 

 

Suppose 𝐿 is a minimal right ideal of 𝑁 𝑆, ∆  such that 𝐿 is not contained in 𝐴 ∆  and 𝐿 is a semilarge . 

Write 𝐺1 = {𝑔 ∈ ∆∶ 𝑔𝐿 ≠  {o } }. Since 𝐿 is not contained in 𝐴 ∆ we have at least one 𝑔 ∈ ∆such that 𝑔𝐿 ≠  {o }, 

therefore  𝐺1 ≠  ∅ . 

Let 𝑔 ∈ 𝐺1 ⇒ 𝑔𝐿 ≠{o }. 

Now for all ∅ ∈ 𝑆 − 𝑜 ,  𝑔∅ 𝐿 = (𝑔𝐿)∅ ≠ 𝑜 , hence (𝑔) ∅ ∈ 𝐺1 . 

Therefore the 𝑆-equivalence class 𝐶containing 𝑔 is contained in 𝐺1 . Thus 𝐺1  contains an 𝑆-equivalence class 𝐶on ∆. 

Assume that ≠  𝐴 𝐺 − 𝐶 . Since 𝐿 and 𝐴 𝐺 − 𝐶  are minimal right ideals , we have 𝐿 ∩  𝐴 𝐺 − 𝐶 = {𝑜 }. Since 
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𝐶𝐿 ≠ {o }, we have 𝐿 ⊈ 𝐴(𝐶). Since 𝐿  is a minimal right ideal, it follows that 𝐿 ∩  𝐴 𝐶 = {𝑜 }. By Lemma 3.7 we 

have 𝐴 𝐶  is a maximal right ideal ⇒ 𝐿 + 𝐴 𝐶 = 𝑁 𝑆, ∆  where the sum is direct. 

By Lemma 3.8  we have  𝐴 𝐶 + 𝐴 𝐺 − 𝐶 =  𝑁 𝑆, ∆ where the sum is direct. 

Since 𝐿 is semi large either 𝐿 ∩  𝐴 𝐺 − 𝐶 ≠ {𝑜 }or 𝐿 ∩  𝐴 𝐶 ≠ {𝑜 } 

But we have 𝐿 ∩  𝐴 𝐺 − 𝐶 = {𝑜 } and 𝐿 ∩  𝐴 𝐶 = {𝑜 } which is a contradiction.  

Therefore 𝐿 =  𝐴 𝐺 − 𝐶 . 

 

Theorem 3.10 

Let 𝐿 be a right ideal of 𝑁 𝑆, ∆  such that 𝐿 ⊈ 𝐴(∆) and 𝐿  be semi large. Then 𝐿   is a minimal right ideal of  

𝑁 𝑆, ∆ iff𝐿 =  𝐴 𝐺 − 𝐶 for some 𝑆-equivalence class 𝐶 on ∆ 

Proof: 

The proof follows from the lemmas 3.5 and 3.9. 
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