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ABSTRACT

The study of near-ring of transformations was initiated by D.Ramakotaiah and G.KoteswaraRao [2]. In their paper
they characterized a class of maximal and minimal right ideals. The study of loop-near rings was initiated by
D.Ramakotaiah and Santakumari [4]. The study of loop-half-groupoid near rings was initiated by D.Ramakotaiah
and PrabhakarRao [3]. In this paper we continue the study of loop-half-groupoid near-rings.

This paper is divided into three sections. In the first section, we present some basic definitions of loop-half-groupoid
near-rings and some basic results without proofs. In second section we present some basic results without proofs
which are necessary for our main work. In the third section we characterize a class of minimal right ideals of a loop-
half-groupoid near-rings of transformations of a loop.

I.  INTRODUCTION

For the definitions of half-groupoids, groupoids, loops, sub loops and normal sub loops see [5]. We begin this
section with the following.

Definition 1.1

A system N = (N, +,-, 0 )is called a loop-half-groupoid near-ring provided

()N = (N, +, 0)is a loop.

(i)N = (N, -)is a half-groupoid.

(iiiy(a-b)-c=a-(b-c)forall a,b,c € Nfor whicha-b, b-c, a-(b-c),(a-b)-c aredefinedin N.
(iVia-(b+c)=a-b+a-cforalla,b,c € N forwhicha-(b+c¢), a-b anda-c

are well defined in N

(V)] aroando-aeNand a-o=0-a=o.

Remark1.2

For any ‘a’ belonging to an additive loop, we shall denote the unique left and right inverses of ‘a’ by a; and a,
respectively. It can be easily verified that (a - b), = a-b,and (a - b), = a- b,for all a, b € Nfor whicha - b, a- b,
and a - b,.are defined. We write

a-bas .

Example 1.3
Every loop near-ring is a loop-half-groupoid near-ring..

Example 1.4

Let (G, +, 0 )be an additive loop where 6 is the additive identity element of G. Let A be proper subset of Gcontaining
0. Definea-b=bforo #a€Aandb € G. Defineo-b =06 anda -6 = ofor all a,b € G, then (G,+,,0)is a
loop-half-groupoid near-ring.
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Definition 1.5

Let (N, +,-, 0 )be a loop-half-groupoid near-ring and let (G, +, 6 )be a loop, then G is called a N-loop provided there

exists a mapping (g,n) » gn of G X N into G such that g(n; + n,) = gn, + gn, and g(n,n,) = (gn,)n,for

alln;,n, € N and g € G for which n; - n, is defined in N.

Definition 1.6
Let N be a loop-half-groupoid near-ring. Let G, and G, be N-loops. A homomorphism f:G; — G,is called a N-
homomorphism provided (g,,)f = (gf)n forall g € Gandn € N. The kernel of f is called a N -kernel of G; .

Definition 1.7
Let N be a loop-half-groupoid near-ring. An N-loop G is said to be an irreducible N-loop if it has no non-trivial N —
kernels.

Lemma 1.8
If N is a loop-half-groupoid near-ring then a non-empty subset Mof a N-loop is a
N -kernel of G iff M is a normal subgroup of G.

Definition 1.9

A non-empty subset L of a loop-half-groupoid near-ring N is called a right ideal of Nprovided (L, +,0) is a normal
sub loop of N and (I + ny)n, +nyn, € Lfor all

l € L,ny,n, € N for which (I + ny)n,, n,n, are defined.

Definition 1.10
Let N be a loop-half-groupoid near-ring. Let G be an N-loop. An element g € G is called an N-generator of G or
simply a generatorof G provided gV = G.

Definition 1.11

If N is a loop-half-groupoid near-ring, then

(i) Anirreducible N -loop with a generator is called an N —loop of type 0.

(ii) A N-loop of type 0 is called a N -loop of type 1 provided gV = G org" = {0} forall g € G.
(iii)A N-loop of type 1 is called a N -loop of type 2 if each non-zero element is a generator.

Definition 1.12
If N is a loop-half-groupoid near-ring, then any right ideal of N is said to be semi large if it has nonzero intersection
with any one of the direct summand of N where N is written as a direct sum of right ideals.

Il.  PRELIMINARIES

In this section we present some basic definitions and basic results without proofs which are needed for our main
work. All these definitions and results can be seen in [3].
We begin this section with the following:

Definition 2.1

Let (G,+,0) be a loop and A be a subset of G. A set S of endomorphisms of G is called a A-centralizer of
G provided:

(i) The zero endomorphism 6 € S.

o(iii) AQ < A for all PeS.

(iv) For®@,yeS and (w)¢p = (w)yp for some 0 # weA= © = .
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Definition 2.2

Let (G, +,0 ) be aloop and A be a subset of G and S be A-centralizer of G.

A mapping T of G into itself is called a A-centralizer of G over S provided (w@)T = (wT)¢ for all weA and PpeS.

Remark 2.3
If oeA and T is a A-transformation of Gover S, then T fixes 6. We shall denote the set of all A-transformations of G
over S by N(S,A). It can be verified that for any endomorphism

¢ of G,(gP), = gr¢p and (gp), = 9,9 for all geG.

Lemma 2.4
Let (G,+,0) be a loop and A be a subset of G containing 6 and S be A-centralizer of G. Then N(S, A) is a loop-half-
groupoid near-ring under the usual addition and iteration of mappings.

In general N(S,A) is not a loop-near-ring. We now state two sufficient conditions under which N (S, A)is a loop-
near-ring.

Lemma 2.5

N(S, A)is a loop-near-ring under any one of the following conditions.
(i) for each T in N(S,A), AT € A.

(ii)for each weG, (wT)¢p = (wP)T forall Tin N(S,A)and ¢ in S.

Throughout this remaining section we assume that Gis a loop ,A a subset of G containing o properly and S be A-
centralizer of G. N(S,A)is the set of all A-transformations of G over S and N(S,A) is a loop-half-groupoid near-
ring.

Lemma 2.6
LetGbe loop and A a subset of G containing 6. Let S be A-centralizer of G then every non zero element of
Aisa N(S,A) generator of G .

Lemma 2.7

Let G be a loop and S be a set of endomorphisms of G containing osuch that S-6 is a group of automorphismsof .
Then S is a centralizer of some subset o of G containing non zero element of G iff UF(@) + G,0 € S-6,0 #1,
where I is the identity mapping of G and F(@) = {x € G : x@ = x}. If this is the case then G has a N(S,A)
generator.

Definition 2.8
Let G be a loop, A a subset of Gcontaining 0 and S a A-centralizer of G.
Let 0 # w,, w,€A. Then w; and w, are said to be S-equivalent if there exists @ € S-6 such that w; 9 = w,.

Definition 2.9

The relation “S-equivaqglent” is an equivalence relation on A. IfT"is any subset of G, then we denote the set
{neN(s,A): (y)n = o for all ye T} by A(T"). It can be seen that A(T')is a loop. If N(S, A)is a loop-near-ring then
A() isa N(S,A) -loop.

Lemma2.10
containing . In particular ifN (S, A) is a loop-near-ring then G is N(S,A) isomorphic to A(G —T).

Theorem 2.11

If N(S,A) is a loop-near-ring, then G isa N(S,A) - loop of type ‘o’ if and only if for some S-equivaglence classT,
A(G —T) does not contain a non zero nilpotent right ideal of nilpotency 2.
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Theorem 2.12

For each proper N (S, A)-kernel G, of G and for each 6 # weA, w + G; S T where T is the S-equivaglence containing

w.

Theorem 2.13

Let G be a loop. Let A be a subset of G containig oand S be A-centralizer of G. If o is a non zero element of A, then
there exixtsTe N(S,A) which maps every element of the

S-equivaglence containing w onto itself and maps every other element onto o .

I11.  CHARACTERIZATION OF MINIMAL RIGHT IDEALS

In this section we characterize a class of minimal right ideals and a class of maximal right ideals of a loop-half-
groupoid near-ring of A-transformations of a loop G over a set of endomorphisms of G

Throughout this section we assume that G is any loop and S is a set of endomorphisms of Gsuch that S-o is a group
of automorphisms of G where 4 is the zero endomorphism of G. Also we assume that Ais a subset of G containing o
and N (S, A) stands for the loop-half-groupoid near-ring of A-transformations of G over S which acts o-primitively
on G as N(S, A)-loopoid.

Lemma 3.1
If H is any subset of G, then the set A(H) = {Te N(S,A): ()T = o for all heH } isa N(S,A) -loopoid.
Proof: Clearly A(H) is a subloopof (N(S,A),+) . Hence itis a loop.
Let T'eN(S, A)and let TeA(H) such that TT is defined.
For any heH, (W) TT = (hT)T = (0)T =0 = TT' € A(H)
Alsoforany Te A(H) and T;, T, € N(S,T), T(T; + T,) =TT; + TT, and T(T; T,) = (TTy )T,
Where T(T; + T,), TT;, TT,, T(T; Ty), (TT; ) T,are defined.
Therefore A(H) = {Te N(S,A): (h)T = o forall heH }isa N(S, A) -loopoid.

Lemma 3.2

If L is a minimal right ideal of N(S,A) such that L is not contained in A(A)thenL isN(S,A) —
loopoidhomomorphicto G.

Proof: Since L ¢ A(A),there exists an element 6 # weA such that wL # {0}. Since w is a N(S, A) generator of G,
we have G = wN(S, A). Clearly wL is a subloop of G.Since L is a normal subgroup of G, we have that wL is also a
normal subgroup of G.

Let wT; € wL and g € G = wN(S,A) = g = wT forsome T' € N(S,A). LetT € N(S,A)
Such that (T; + T)T and T T, are defined.

Now (wT; + wT)T + oT'T, = w[(T; + T)T + T'T, lewL. Therefore wL is a N(S,A) —loopoid kernel of G.Since
G is irreducible and L # {0}, we have wL = G. Now define a mapping @:L - G by (1) = wl for alll € L.
Clearly @ is N(s,A)-loopoid epimorphism of L onto G. Also clearly ker@ is a right ideal of N(s,A) which is
properly contained in L. Since L is a minimal right ideal, we have ker@={6} and hence @ is one-one. Hence @ is an
N (s, A)-loopoid isomorphism of L onto G .

Theorem 3.3

Let G be any loop and {0} # AC G. Let Sand S’ be two A-centralizers of G such that S = S'. Then N(S,A) =
N(S,A) ifandonlyif=5".

Proof: If S = S’ then there is nothing to prove.

Conversly suppose that N(S,A) = N(S',A), suppose if possible S # S’

Since S € S', thereexists @ € S'suchthat @ € S, clearly @' # 6 .

Let w be any non zero element of A. Let C and C" be respectively S and S’ equivalence classes containing w.

o 339
G JESR (C)Global Journal Of Engineering Science And Researches



THOMSOMN REUTERS

[ICESTM-2018] ISSN 2348 - 8034
Impact Factor- 5.070

Now C = {w@:@ € S — 6} and C = {w@: @ € S — 6}.

We have w®' € C'. Suppose if possible w@ € C. Then there exists @ € S — 6 such that w®' = w®.

Since S €5', we have € S'. Now @ and @'are elements of S’ — & such that w@® = w@where 6 # weA. By the

definition of A-centralizer, @ = @'which is a contradiction.

Therefore w@' & C. Write 0@’ = w;.

By lemma 2.6 there exists a T € N(S, A) such that wT = @, and T maps every element of Gwhich does not belong

to the S — equivalence class Conto 6. Since N(S,A) = N(S,A), we have T € N(S,A) and hence 6 = w,T =

(w®)T = (wT)D".

Since @ is an automorphism of G, it follows that wT = ©. Therefore 6 = wT = w; = w®.

Again since @'is an automorphism. @" = o, which is a contradiction. Therefore S = S'.

Corrolary 3.4

The set of all loop endomorphisms® of loop G such that (w@)T = (wT)@for all weA, T € N(S,A) and A@ < Ais S
itself.

Proof:

Let S ={@:0 isaloop endomorphism of G such that AQ € Aand (w®)T = (wT)® for all weATE€
N(S, M)}
Now we shall prove that S" is a A-centralizer of G.
Clearly6 € S'and A@ S Aforall @ € S — 6.
Let @ be a non zero element of S'. Since G is irreducible , the kernel of @ must be either G or {© }. Since @ # it
follows that ker@ = { © } and hence @ is one-one.
Let g € G and w® # weA. Now wPeAand @ # O.
Hence by lemma 2.6, w@® is a N(S, A) -generator of G. Therefore, there exists a
T € N(S, A)such that (w®)T = g. Put g, = wT. Now g, € G and g,0 = (wT)® = (w®)T = g.
Hence @ is onto . Therefore @ is an automorphism of G.
Finally suppose that w® = 0¥, where @, € S — 6 and 0 # weA.
Let g € G. Then there existsa T € N(S,A)such that wT = g.
Now g@ = (wT)® = (wB)T = (W¥)T = (wT)¥ = g¥. Thisis true for all g € G.
Hence @ = V.
Therefore S" is a A-centralizer of G.
By the definition of S, S € S'. It can be easily verified that N(S,A) = N(S', A).
Therefore by the above theorem 3.3 we have S = S

Lemma 3.5
Let C be an S-equivalence class on A. Then A(G — C) is a N(S, A)-loopoid of type 0 and hence it is a minimal right
ideal of N(S, A).
Proof:
Clearly by lemma 3.1, A(G — C) isa N(S, A)-loopoid. Let g € G.
By theorem 2.13 there existsa T € N(S,A) suchthat gT = gandgT =oforallg' € G —C =T € A(G — C).
Now let g, € C.
Theng, = gp forsome @ € S —6 = ¢g,T = (g®)T = (gT)D = gd = g,.
Hence g, T = g, for some g, € C. Now we shall show that TN(S,A) = A(G — C)where TN(S,A) = {TT, =T, €
N(S,A) and TT; is defiHence ned}.
Let TT, € TN(S,A).
Foranyg € G — C,(g)TT; = (gT)T; = (0)T, = 0.
Hence TT; € A(G — C).
Conversly suppose that T; € A(G — C).
Define T,: G - G by (g)T, = (g)Tjifg € Candoifge G—C.
Now it can be easily verified that T, € N(S,A)and T, =TT, = T; € TN(S,A).
Therefore TN(S,A) = A(G — C).
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Put K = A(G — C). Now K is aright ideal of N(S, A).

Further forany g € C,gK = gA(G — C) = g TN(S,A) = gN(S,A) = G.

For some g € C. Define @g: K — gK by (k)dg = gk for any k € K.

Clearly @g is a N(S, A)-loopoidepimorphism of Konto G. Since S-equivalent elements have equal annihilators, we
have A(G) = A(C).

Therefore kergg = KNA(g) = A(G — C)NA(C) = A(G) = {6}

Therefore @g is an N(S, A)-loopoid isomorphism of K onto G. Since G isa N(S, A)-loopoid

of type 0, K = A(G — C) is also a N(S, A)-loopoid of type 0 and hence A(G — C)is a minimal right ideal of N(S, A).

Theorem 3.6

Let G be a N-loopoid of type 0. If g isa N -generator of G, then A(g) is a maximal right ideal of N.

Proof:

Since g isa N -generator of G, we have gN = G.

Define a mapping @: N* - G by @(x) = gx for allx € N*.

For any x;,x, € N*,0(x;+x,) = g(x;+x,) = gx; + gx; = 0(x;) + 0(x;).

Foranyx € Nt,n € N,@(xn) = g(xn) = (gx)n = 8(x)n.

Let g, € G — g, = gxfor some x € N.Now x € Nand @(x) = gx. Hence x € ker @iff@(x) = o iff gx =0 iff
x € A(g).

Therefore, @ is a N-loopoid homomorphism of N*onto G with Kernel A(g). Hence N*/A(G) is a N -loopoid
isomorphic to G. Since A(g) is the kernel of N-loopoid homomorphism, it is a right ideal of N. Since G is
irreducible, we have N*/A(G) is also irreducible and hence A(g) is a maximal right ideal of N.

Lemma 3.7

Let C be an S-equivalence class on A. Then A(C) is a maximal right ideal of N(S, A).

Proof:

By the above theorem 3.6 ,A(G) is a maximal right ideal of N(S,A) for any g € A. Since all the elements of an S-
equivalence class have the same annihilators, we have A(C) = A(g) for some g € C. Hence A(C) is a maximal
right ideal of N(S, A). Hence the result.

Lemma 3.8

Let C be an S-equivalence class. Then N(S, A) is a direct sum of A(C) and A(G — C).

Proof:

WE have A(G — C) N A(C) = A(G) = {6}.SinceA(G — C) is a minimal right ideal, it is a non zero right ideal of
N(S,A) and hence A(G — C) € A(C). Since A(C) is a maximal right ideal, we have A(C)+ A(G — C) = N(S,A).
Hence N(S,A) is a direct sum of A(C) and A(G — C).

Lemma 3.9

If L is a minimal right ideal of N (S, A)such that L is not contained in A(A) and L is a semilarge , then L = A(G — C)
where C is an S-equivalence class of A.

Proof:

Suppose L is a minimal right ideal of N(S, A) such that L is not contained in A(A) and L is a semilarge .

Write G, = {g € A: gL # {0} }. Since L is not contained in A(A)we have at least one g € Asuch that gL # {0},
therefore G; + 0.

Let g € G, = gL #{0o}.

Now for all @ € S — 6, (9@)L = (gL)D + 6, hence (g) @ € G,.

Therefore the S-equivalence class Ccontaining g is contained in G;. Thus G; contains an S-equivalence class Con A.
Assume that # A(G — C). Since L and A(G — C) are minimal right ideals , we have L n A(G — C) = {6}. Since
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CL +# {0}, we have L € A(C). Since L is a minimal right ideal, it follows that L n A(C) = {6}. By Lemma 3.7 we

have A(C) is a maximal right ideal = L + A(C) = N(S, A) where the sum is direct.

By Lemma 3.8 we have A(C)+ A(G — C) = N(S,A)where the sum is direct.

Since L is semi large either L n A(G — C) # {6}or L n A(C) # {6}

Butwe have LN A(G — C) = {6} and L n A(C) = {6} which is a contradiction.

Therefore L = A(G — C).

Theorem 3.10

Let L be a right ideal of N(S,A) such that L & A(A) and L be semi large. Then L is a minimal right ideal of
N (S, A)iffL = A(G — C)for some S-equivalence class C on A

Proof:

The proof follows from the lemmas 3.5 and 3.9.

REFERENCES
[1] D.Ramakotaiah and G.KoteswaraRao., A topological formulation of the density theorem for O-primitive
near-rings. Proc, Roy Irish Acad. (14) 78A
[2] D.Ramakotaiah and G.KoteswaraRao., O-primitive near-ring of transformations. Proc, Roy Irish Acad.
[3] D.Ramakotaiah and PrabhakaraRao ., Loop-half-groupoid near-rings. Arch.Math. 47 (1986), 401-407.
[4] D.Ramakotaiah and Santa Kumari., Onlopp near-rings, Bull. Austrel .Math. .soc., 19 (1978), 417-435
[5] Bruck R H., A survey of binary systems. Berlin-Heidelberg, New-York 1966

" 342
Al EsR (C)Global Journal Of Engineering Science And Researches



